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ON THE ZEROS OF THE ERROR TERM 
FOR THE MEAN SQUARE OF IC(' + it)I 

A. IVIC AND H. J. J. TE RIELE 

ABSTRACT. Let E(T) denote the error term in the asymptotic formula for 

1 (+ it) dt. 

The function E(T) has mean value 7r. By tn we denote the nth zero of 
E(T) - 7. Several results concerning tn are obtained, including tn+1 -tn < 

t1/2 . An algorithm is presented to compute the zeros of E(T)-7 below a given 

bound. For T < 500000, 42010 zeros of E(T)-7r were found. Various tables 
and figures are given, which present a selection of the computational results. 

1. INTRODUCTION 

Let, as usual, for T > 0 

E(T) = - + it) 2 dt - Tlog (f) - (2y - I)T 

denote the error term in the asymptotic formula for the mean square of the 
Riemann zeta function on the critical line (y is Euler's constant). In view of 
F. V. Atkinson's explicit formula for E(T) (see [2] and [1 1, Chapter 15]) and 
its important consequences, this function plays a central role in the theory of 

C(S) - 
It is also of interest to consider E(T) in mean square, and one has 

(1) 
T E 2(t) dt = CT312 + &(T log5 T) (c = 32 (32) 10.3047) 

This formula is due independently to T. Meurman [ 16] and Y. Motohashi [1 7], 
who improved the previous error term &( T5/4 log2 T) of D. R. Heath-Brown 

[10]. One consequence of (1) is the omega result E(T) = Q(T1/4) [6], which 
was sharpened by Hafner and Ivic [7, 8] to 

(2) E(T) = Q+ { T(log T) 1/ (log log T)(3+og 4)/4 

x exp(-B log log log T)} (B > 0) 
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and 

(/ D(log log T) 114 V 
(3) E(T) = Q { T1 exp (log loglogT)3/4 (D >0), 

where f(x) = Q+(g(x)) (resp. Q_ ) means that f(x) > Cg(x) (resp. f(x) < 
-Cg(x)) for some C > 0 and some arbitrarily large values of x; further- 
more, f(x) = Q2(g(x)) means that If(x)l = Q+(g(x)). These omega results 
are analogous to the sharpest omega results for A(x), the error term in the clas- 
sical Dirichlet divisor problem. This suggests the analogy between E(T) and 
27rA( T) (see [1 1, Chapter 15]), which was one of the principal motivations for 
Atkinson's pioneering work [2]. However, there is an important difference be- 
tween E(T) and 27rA(jT). While E(T) is a continuous function of T (with 
derivatives of any order), A( T ) is certainly not, since Z,<x d(n) (d(n) is the 
number of divisors of n) has jumps for integral x which may be as large as 
exp( clg'x ). (Here and later, C, C1, ... denote positive, absolute constants). 
From (2), (3) and continuity it is immediate that E(T) has an infinity of zeros, 
and the purpose of this paper is to study these zeros and related topics, both 
from the theoretical and numerical viewpoint. 

It seems expedient, especially from the numerical viewpoint, to study the 
zeros of E(T) - 7 rather than those of E(T). This is because E(T) has the 
mean value 7. More precisely, Hafner and Ivic [7] prove that, for T > 2, 

E(t) d Tt =7rT + 23/2 E(_ 1)nd(f) (arcsinh ?) 
n<N v 2 

T I - 1/4 

x (2 + >1 sin(f(T, n)) 

-2 zIA) (log2 )2 sin(Tlog2T - T+ ) 

+ &(T' /4) 

where 

f(T, n) = 2 T arcsinh + (27rnT +7r 2n2)1/2 _ ) 7/4, 

arcsinh x = log x + X2? ) 

N = N(T, N = 2T N+ 2 NT 
1/2r 

AT < N < A'T for any two fixed constants 0 < A < A'. Note that formal 
differentiation of the sine terms in (4) leads to Atkinson's formula [2] for E(T) 
itself (without the error term &(log2 T)). Also, on simplifying (4) by Taylor's 
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formula, one may deduce 

( T E(t) dt = T + 2 714w 314T314 d- 1)"d(n)n 5/4 sin ( 8 _nT -r) 

+ 6(T2/3 log T), 

which we shall need in ?3. A nice feature of (5) is that the series is absolutely 
convergent, so that I T 3 / 

(E(t) - 7) dt = &f(T I) 

and, as shown in [71, the above integral is also Q?(T314). 
The plan of the paper is as follows. In ?2 we shall study the general problem 

of gaps between consecutive zeros of E(t) - f (t), where f (t) (<K t 1/4- for any 
fixed 0 <'q < l ) is continuous. In ?3 we turn to zeros of E(t) -7 and show, by 

using (5), that E(t) - 7f always has a zero in [T, T.+ cV'7] (c > O, T > To). 
Some other results involving the zeros of E(t) -7r, E'(t) and related topics, are 
discussed in ?4. In ?5 we describe the algorithms we used for the computation 
of E(t) - 7r and its zeros, including an estimate of the errors involved. For 
t < 500000, 42010 zeros of E(t) - 7 were found. In ?6 we present tables and 
figures with a selection of the results of the computations. These results eluci- 
date the behavior of E(t) - , but clearly much more extensive computations 
will be needed to examine the most important conjectures concerning the order 
of E(t) - 7r and the distribution of its zeros. 

2. GAPS BETWEEN GENERAL ZEROS 

In this section we consider the zeros of the general function 

Ef (t) := E(t) - f (t) , 

where we shall assume that f(t) is continuous for t > to(f) and satisfies 

f(t) = /4- 
) 

for any fixed q such that 0 < q < 1/4 (note that the sign of f(t) is unimpor- 

tant). From (2)-(3) one has trivially E(T) = Q (T1/4), hence also Ef(T) = 

Q2? (T1/, so that by continuity each Ef(t) has infinitely many distinct zeros 
in (to(f) oo), which we shall denote by t1 (f) < t2(f) < . Our aim is to 
estimate the quantity 

(6) K(f) = inf{c > 0: tn+I(f) -tn(f) < tn(f)} 

or, in other words, to estimate the gaps between consecutive zeros of Ef (t), 
since (6) implies 

tn+I(f) -tn(f) < (tn(f))K(f)?c (n > no(c, f)) 

for any c > 0. Here and subsequently, a(n) < b(n) means that a(n) = 

(b(n)) , n -* oo. Determining the exact value of K(f) for any f seems a 



306 A. IVIC AND H. J. J. TE RIELE 

difficult problem. Our main result on K(f) is contained in 

Theorem 1. Let 
a = inf{c > 0: E(t) < tC}. 

Then 

(7) a < K() < 

Proof. Note first that from known results on a (see [11, Chapter 15] and [7]) 
one has 

1 139 
< < x = 0.324009324..., 

4 -429 
so that unconditionally K (f) > 4 . Since, in analogy with the classical conjecture 
A(X) < x114+6 for the divisor problem, one conjectures that a c 4, perhaps 
even K(f) = 4 for all f . If true, the last conjecture is very strong, since it 
implies [1 1, Chapter 15] that C(2 + it) < t1/8+c, which is not proved yet. 

Now we turn to the proof of the lower bound in (7). Suppose that a > K(f). 
Then for e > 0 sufficiently small, Ef(t) must vanish in [T, T + T x ] for 
T > To(c), which we shall presently show to be impossible. By the definition of 
a, there exist arbitrarily large T such that for any given c > 0 we have either 
E(T) > T or E(T) < -T` 6/2. In both cases the analysis is similar, so 
we shall consider only the former case. From 

E(T + H) - E(T) 
I 

;( + it) dt - t (log t + 2y - 1) 

it follows that for some absolute C > 0, 

(8) E(T + H) - E(T) > -CH log T (T>2, O<H< T). 

Let 0 < H < T('- . Then 

Ef (T + H) - Ef (T) = E(T + H) - E(T) + &(T1/4-) 

> -CT log T - C1 T 
which implies 

Ef (T + H) > T('t 12 CT log T - 2C T1/4 > C2Tt E/2 > 0 

for some Cl, C2 >0,0 0<C 2(a-< + ) and T> To(e),since a>4. 

Therefore, Ef(t) does not vanish in [T, T + T('t-], which is a contradiction 
if a > K(f) and c > 0 is sufficiently small. 

To prove the upper bound in (7), suppose that 

(9) T1/2 log6 T < H < T112+q 

Assuming that Ef(t) does not change sign in [T, T + H], we shall obtain a 
contradiction with suitable H, which will yield K(f) < 2 . If Ef(t) does not 
change sign in [T, T + H], then 

T+H T+H 

(I 0) / E Ef(t)l dt E f E(t) dt. 
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From (1), (5) and (9) we infer that 

(11) IT Ef(t)dt= (-C+o(l)) T'12H (T->X) 

and 

(12) T| Ef (t) dt < T'I 

since by hypothesis f (t) << t'/4 14 and, for T < t < T + H, 

E2(t)= E2(t) + 9( T' /4- I E(t)I) + T 1/2-2q) 

We shall use Holder's inequality for integrals, letting 0 < ( < 2 be a fixed 
number which may be chosen arbitrarily small. We have 

HTI <? f Ef(t) dt = f Ef(t)Ef a(t) d t 

(13) ? 
I IEf(t)I dt) ( EH (2-)/'(5') d ) 

?< T3614Ii-6 

where we used (10) and (12), and where 

I = IT|TII IEf(t)A ()/(1-6) dt = I Ef (t)T I d. 

We need an upper bound estimate for I, and to this, we shall use the large values 

technique discussed in Chapters 13 and 15 of [11]. Namely, let T1/4 < V < 
T1/3 and let Ro = Rk(V, T, To) be the number of points ti in [T, T + To] 
such that IEf(t,)l > V and Iti - til > CV for i j j and any fixed C > 0. 
Then 

JE(ti)I > IEf(t,)I - if(t I > V - C1 T /4 l > V/2 

for i = I , Ro . Analogously as in (1 3.66) of [1 1], we obtain 

(14) Ro <? TC(TV 3 + RT2/9j9T7/18V 2 

for any given E > 0. This gives 

(15) RV< TI+6V 3 

for 

(16) V > C T4/36T7/36+e/2 (C > 0). 

In our case, To = H > T"/21og6 T, thus V > T'/4 holds trivially if (16) is 

satisfied, and V > T"/3 is impossible since ca < 3 . In I we divide the interval 
of integration [T, T + H] into subintervals of length V (except perhaps the 
last such subinterval, which may be shorter, but whose contribution to I is 
clearly negligible), and write I = II +I2. In Il the maximum of IE(t)l in each 
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of the subintervals is at most C1 H4136 T7136+c/2 , while in I2 it is larger. We 
estimate I, trivially, using (1 1), and obtain 

'1 ?g HT1/2 (H4136 T7/36+c/2 )3/(1 -5) 

To bound I2, we use the large values estimate (15) (since (16) holds), consid- 
ering separately subintervals with even and odd indices, so that Iti - tj1 > V 
is fulfilled. Hence, by the definition of a!, we obtain (considering <(log T) 
possible values of V of the form V = 2m) 

I2 < log T max R V 
T1/4 < V< T'F+E 

<< T 
I+ log T max V31(1-3) < T 

if 0 < ( < 2. Therefore, (13) gives, for 0 < e < 1 

2 + 
HT < T /T1 b+ + T H T3lH-T lb/H b3T736b 

Simplifying, it follows that 

(17) H < T? 12+(a- l/4)+c + T1/2+c < T 12+6(a- 1/4)+c 

since a > 4 . Thus, if we take 

H T 1/2+-(a- 1/4)+2c 

then for (5 and c sufficiently small, (9) holds but (17) is impossible. This 
contradiction shows that K(f) < 2, as asserted. o 

3. ZEROS OF E(t) - 7 

The upper bound in Theorem 1 applies to the case when f (t) = , that is, to 
the zeros of E(t) - r. Henceforth, we let tn = t n(7), so that 0 < tl < t2 < ... 

denote the distinct zeros of E(t) - 7 (these bear no relation to the points ti in 
?2). Theorem 1 gives 

(18) t+ -tn <? tn2c (n > n0(c)), 

but we shall use a special method to improve (18) by removing "c". The result 
is 

Theorem 2. There exists a constant c > 0 (effectively computable) such that 
E(t) -7r hasa zero of odd order in [T, T+c-V'7] for T To. 
Proof. We shall use the fact that, if h(t) E C[2, T], and Nh(T) is the number 
of zeros of h(t) in [2, T], then Nh(T) > NH(T) - 1, where NH(T) is the 
number of zeros in [2, T] of the function 

H(t, a) = 1 uah(u) du 
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for any fixed real a. For, if T' and T" are two zeros of H(t, a) in [2, T], 
then 

O = H(T ,a) - H(T, a) =A uah(u) du . 

Hence Uah(u), and consequently h(u), must change sign in [T', T"] and have 
a zero of odd order in [T', T"] . In proving Theorem 2, we shall make use of 
the asymptotic formula (5), and we shall consider the function 

00 

g(t) Zd(n)n 5/4 sin () nt - . 
n=1 

Clearly, g(t) e C[O, oo), and g(t) has an infinity of zeros, since g(t) = Q+(1) 
(follows by the method of Hafner and Ivic [7]). Further, for 0 < H < T, we 
have 

T+H g2(t) dt d2(n)n-5/2 T (1 -cos(2 87r nt- dt 
n= 1 

+6f jm,n m#(mn) ~-5/4 J eiV \/'f)dt) 

m,n=l;mi~n 

To estimate the integrals on the right-hand side, we use the simplest result on 
exponential integrals (see Lemma 2.1 of [11]): Let F(x) be a real differentiable 
function such that F'(x) is monotonic with either F'(x) > mr, or F'(x) < 

-m < 0 for a < x < b. Then 

(19) Jab eiF(X)dx <4m-'. 

Using (1 9), we obtain 

IT g (t) dt = Ed (n)n ) H + &(vT) 

+(f<|T1/2(Ln22 L 1 
I t m~~r-n I, kn=1 n<m<2n 

5/4;3/ 

+ ZEn E S nn) } 
n= mtn>2 n 

- CH+6&(v7T), 

where 

C= d2(n)n-5/2 ((5/2)1561592 c 
1: 

d (n) 
- 2C(5) 

'Z: .561592 

n=l 

Hence, for T > To, suitable C1, C2, C3 >0 and C3VT < H < T, we have 

(T+H 2 
(20) C H < g g(t) dt <C2H. 
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However, 

E (T) T(E(t) -7r) dt 
2 

(2)3/4 T34(g (T) + y(T)), 

where y(t) is continuous, and by (5), 

(21) y(t) =&(t-1/12 logt) 

Suppose now that E1 (t) does not change sign in [T, T+ H], where H = DV7i 
for some sufficiently large D > 0. Then g(t) + y(t) also does not change sign 
in [T, T + H], and we have 

rT+H 2 T+H 
IT (g(t) + y(t)) dt < max lg(t) + y(t)l J?(g(t) + y(t)) dt 

(22) T+?H 

< C4 f (g(t) + y(t)) dt 

Estimating the last integral by (1 ) and using (2 1), we obtain 

(23) f (g(t) + y(t))2 dt ? C5V7, 

where C5 > 0 is an absolute constant. On the other hand, using (20) and (21), 
we obtain 

fT+H + y(t))2 
d T+H 2 (2 

] (g(t)+y(t) fdt (g (t) +2g(t)y(t)+y (t)) dt 

rT+H 2 
= g (t) dt 

(24) T/2 

+ T l/ Hlo2gT (| g(t) dt + +o(H) 

>ClH+ o(H) (T --+ocxD)+. 

Comparing (23) and (24), it follows that 

CIH + o(H) < C5V-, 

which is impossible for D > C5/C, . Hence g(t) + y(t), and consequently 

EI (t), must change sign in [T, T + Dv7T] . By the discussion at the beginning 
of the proof it follows that E(t) - 7 must change sign in [T, T + 2Dv'7], and 
Theorem 2 follows with c = 2D. A more careful estimation of the preceding 
integrals (working out explicitly all the &-constants) would yield an explicit 
value for c. o 

The method of proof of Theorem 2 is fairly general and can be used to yield 
results on sign changes in short intervals for certain types of arithmetic error 
terms. The key ingredient is the existence of a sharp formula for the integral 
of the error term in question (the analogue of (5)). In particular, it follows by 
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our method that A(x) changes sign in [x, x + C1, /x] for x > x0. This also 
follows from general results of J. Steinig [22], whose method is different from 
ours and cannot be used to yield Theorem 2. 

Another important problem is the estimation of tn, the nth zero of E(t) - , 
as a function of n. Alternatively, one may consider the estimation of the 
counting function 

K(T) 1. 
tn<T 

Since [T, T + cIT] contains a tn for T > To, it follows that K(T) > VT. 
Setting T = t, we have n = K(tn) ? t4, or 

(25) tn < . 

This upper bound seems very crude to us, and we proceed to deduce a lower 
bound for tn, which appears to be somewhat closer to the truth. Note that 
K(T) < M(T), where M(T) denotes the number of zeros in [0, T] of the 
function 

E'(t) = -( + it) | -log ( - 2y = Z2(t) _ log (2 )-2y . 

Here, as usual, we denote by Z(t) the real-valued function 

Z(t) = 1/2 + it) ( + it) 

((s) = -(1) - 2S7ZS sin ()(1 - s)) 

so that IZ(t)l = ( + it)I and the real zeros of Z(t) are precisely the ordinates 
of the zeros of C(s) on the critical line Re s = . But M(T) =M (T) + M2(T), 
where M1 (T) and M2(T) denote the number of zeros of 

z(t) - (log 9 + 2y) , Z(T) + (log 2t + 2y) 

in [0, T], respectively. Note that Mj (T) < Lj (T), where Lj(T) is the number 
of zeros of 

Z /(t) + ( 

in [0, T] . It was shown by R. J. Anderson [1] that the number of zeros of Z'(t) 
in [0, T] is asymptotic to T log T, and by the same method it follows that 
Lj(T) = (Tlog T) . Hence K(T) < T log T, and taking T = tn, we obtain 

(26) tn > n/ log n. 

Our numerical results (cf. Table 2 in ?6) indicate that both (25) and (26) are 
far from the truth. In the range we have investigated numerically, tn behaves 
roughly like n log n, but we have no idea how to prove this in general. 
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4. SOME FURTHER RESULTS 

As before, let tn be the nth distinct zero of E(t) - 7. In this section we 
present some further results on the ta's and related subjects. 

First observe that 

(tn+l- tn) max +it > | + it) dt 
n <t<tinjIJ2 \2 / 

= t (log 2+ 2y-1 
I + E(tn+l) E(tn) 

=t log 27 + 2 y- I) > (tn+ -t) (log 2n + 2y) 

Therefore, it follows that 

I tn1/2 (27) max (- +it > (log 2 + 2y) 
t,?<t<t,1+ 7 

This inequality shows that the maximum of I( + it)l between consecutive 
zeros of E(T) - 7 cannot be too small, even if the gap between such zeros is 
small. On the other hand, the maxima of IC(' + it)l can be larger' over long 
intervals. Namely, Balasubramanian [3] proved that 

(28) max [ H (-+ it) > exp l-og H) 

for (log T)c < H < T. We recall that the best upper bound for ( + it) is, 
under the truth of the Riemann hypothesis (see E. C. Titchmarsh [24, p. 354, 
Theorem 14.14(A)]), 

(29) C + it) < exp ( Clg t) 

so that the gap between (28) (for H = T) and (29) is not so large. 
Another useful inequality is 

(30) max |E(t) - I < (tn+ - tn)logtn, 
IE[t' , 1 II 

the proof of which is analogous to the proof of K(f) > a in Theorem 1, and 
which is actually more precise than the inequality K(7Z) > a (for f(t) = 7 in 
Theorem 1). Namely, let 

IE(i) - 7l = max IE(t) - nj. 
1e[t 1 I R1 + II] 

ITake, for example, H _ T = t = 10 20; then (27) yields max > 6.73 and (28) yields max > 
13.47. Practically speaking, the bounds in (27) and (28) are weak: in [14] we have maxZ(t) = 
116.88; the corresponding right-hand sides (27) and (28) yield 4.39 and 6.77, respectively! For 
recent results concerning large values of Z(t) , cf. [18] and [19]. 
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Suppose E(1t) -7r > 0 (if E(t) -7r < 0, then we use 

(31) E(T-H)-E(T)<CHlogT (C>O, O<H< 'T) 

which is proved analogously as (8)), and use (8). Then 

E(I + H) -7r > E(t) - - CHlogtn > 0 

for 0 < H < (E(t) - 7)/(2Clogtn) . Thus E(t) - 7 has no zeros in [1, 1 + H] 
with H = (E(t) - 7)/(2Clogtn). Consequently, 

(E(t)- 7)/(2C log tn) = H <tn+l -tn 

and (30) follows. 
Using (30), we may investigate sums of powers of consecutive gaps tn+1 - tn. 

Namely from (1) we have, as T oo, 

(32) Cl T312 f E (t) dt j E (t) dt. 

T<t,, <2T, T"I4 log-2 T<tn+ -t,1 

The contribution of gaps less than T1 /4 log-2 T is negligible by (30) and trivial 
estimation. From (32) we infer by (30) that 

T ?/2 (tn+l - tn) (max IE(t) 7r+21) 
(33) ~~T<t,,<2T,tn -t,7 IT /4iog - 2T (tE [tn, t 

] ()7[ ++ 

(< log2 T (tn+l-tn) + T, 
T<t,l < 2T, t7 X-t, > T 1/4 log-2 T 

which gives (replacing T by T2'J and summing over j > 1) 

(34) T3/2 log-2 T < Z (tn+ I-tn)3 
t_l<T 

In general, for any fixed ae > 1 and any given c > 0, 

(35) T3a-e4 <9'X (t1 (tn+ I- tn)( 
t_1<T 

(Here, a(n) <<, b(n) means that the constant implied by the relation a(n) = 

O(b(n)) depends on e and a.) This follows along the same lines as (34), using 

T <a, e a E(t) dt (a >0, c >0) 

with a = a - 1. The last bound for a > 2 (without "e") follows easily from 
(1) and H6lder's inequality, and for 0 < a < 2 it follows from 

T 32< / E/ I(t)E 22 (t) dt < (f |E(t),a dt)(f E(t)14a dt) 



314 A. IVIC AND H. J. J. TE RIELE 

on bounding the last integral by Theorem 15.7 of [11]. It may be conjectured 
that the lower bound in (35) is close to the truth, that is, we expect that 

(36) (t - - ) (3++o())4 (a > 1 , T - oo), 
tn<T 

but unfortunately we cannot at present prove this for any specific a > 1 (for 
a = 1 it is trivial). 

The lower bound estimate (34) may be compared to corresponding results 
for Yn+l - Yn, where 0 < Yl ? Y2 < are the positive zeros of C(2 + it) (or 
Z(t)). Large values of Yn+l - Yn were (unconditionally) investigated by Ivic 
and Jutila [13] and Ivic [12], where it was shown that 

(37) Z (yn+- Yn)3 < Tlog6 T, 
Yn<T 

while from 

1/3 12/3 
T << E (yn+1 - Yn) < ( yn+I-TYn) 

yt, < T Yn<T Yn<T 

<w 
( (Yn+1 -Yn) 3) (Tlog T) 2/3 

Yn<T 

it follows that 

Z (y _ yn)3 > T log-2 T. 
Yn<T 

Thus, it follows that the gaps between the ta's are, on the average, much larger 
than the gaps between the yn's. 

If one assumes RH, then (37) may be sharpened. From the work of A. Fujii 
(see p. 246 of [24]) it follows that, for any fixed integer k > 1 

(38) Tloglk T < E (yn+-Yn)k < Tlogl T, 
Yn < T 

and presumably the bounds in (38) may be replaced by an asymptotic equality. 
Of course, the lower bound in (38) is unconditional and follows as in the case 
k = 3 which we already discussed. 

It is known (see H. M. Edwards [4]) that Z(t) cannot attain positive local 
minima or negative local maxima if RH is true. In other words, the zeros of 
Z(t) and Z'(t) are interlacing, and on RH, R. J. Anderson [1] proved that the 
zeros of Z'(t) and Z"(t) are also interlacing. However, the situation with the 
zeros of E(t) (or E(t) - 7r) in this respect is (unconditionally) quite different. 
We have 

E (t) 
2 
2(t) -(log 

t 
+2j E, E"(t) = 2Z(t)Z'(t) - 

E(rt) = 2 ( 2) z(J)(t)Z(r-1-j)(t) + (_1)r- (r - 2)!tlr 
j=O 
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for r> 3. If E'(t) =0, then 

(39) (- +it) = log + 2y, 

and heuristically, (39) should hold quite often. Since we have by the remark 
following Theorem 1 that K) > 4, this would mean that E(t) - 7r must 
have many positive local minima and negative local maxima between large gaps 
between its zeros, regardless of the truth of RH. This will be confirmed by the 
numerical experiments described in ?6. If 0 < I < T2 < are the zeros of 
E'(t) , let 

= inf{c > 0: Tn? - n << Tc 

and 
0 = inf{c > 0: Yn+l -Yn << Ync 

denote the exponents for the gaps between the corresponding consecutive zeros 
of E'(t) and Z(t). Determining the true values of 0 and 4 seems almost 
hopeless. Under RH, 0 = 4 = 0, and unconditionally, A. Ivic in [11] proved 
that 0 < 0.15594583... and in [12] indicated how 0 < 0.15594578... may 
be attained. These are the sharpest hitherto published results. 

5. COMPUTATION OF THE ZEROS OF E(T) -7t 

In this section we shall describe how we have computed the zeros of E(T)-7t . 
We write 

(40) E(T) - Jr = E(T) =I(T) - T (log 
T 

+ 2y - 1 -) r , 

where 

(41) I(T) =j (2 it) dt. 

Each time a value of E,(T) is computed, the corresponding I(T)-value is 
saved, since this can be used in the computation of neighboring E, (T)-values, 
in view of the relation 

(42) I(T + h) = I(T) + | -( +it) dt. 

In ?5.1 the formulas used to compute the values of IC(' + it)l are given. The 
integral in (42) is computed by means of the Simpson quadrature formula with 
extrapolation; this is described in ?5.2. 

We have developed a numerical algorithm to find as many zeros of E,(T) 
as possible, starting at T = 0, and proceeding with small steps on T. We 
cannot be absolutely sure that this algorithm does find all the zeros, but special 
provisions have been made in case of doubt. The algorithm is described in ?5.3. 
The error control of the computations is explained in ?5.4. 
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5.1. Computation of 14(2 + it)j. There are two formulas suitable for the com- 
putation of IC(' + it)j: the Euler-Maclaurin and the Riemann-Siegel formula. 

The Euler-Maclaurin formula enables us to compute C(s) to any desired 
accuracy, by taking m and n large enough in 

n-I I 1-s m 

(43) ;(S)=Lj j + -n + 1- m+ (s) T , 
2 s-lI +ZTk,n (s) +Um,n (s), 

1=1 k=1 

where 
12k I-s-2k 

2k-2 

Tk n(s)= (2k)!n J7 (s + 1) 
j=O 

and 

Um,n(S)l < T ,n(S) s+ 2m + 1 
Re(s) + 2m + 1 

for all m > 0, n > 1, and Re(s) > -(2m + 1). Here, B2= 1/6, B4= 
- 1/30, ... are the Bernoulli numbers. In order to obtain (I + it) to within a 
specified absolute tolerance, we may take n t/(27r). Thus, the computational 
work required is roughly proportional to t. The precise choice we made for m 
and n is as described in [20] and [21] (see also ?5.4). As an example of the use 
of (43), take s = 3 (cf. (1)); for m =2, n = 5 we find (3) =2.612375056 

with an error which is less than 3. 1 x I 0 7, and for m =2, n =6 we find the 
8 

value 2.612375259 with an error less than 9.4 x 10 . For the computation 
of C in (1) we took 4(3) = 2.612375 (and C(3) = 1.202057). 

The Riemann-Siegel formula is a substantial improvement over the Euler- 
Maclaurin formula for not too small t, since its computing time is proportional 
to t1 /2 rather than t. Write the function Z(t) = / 2 (I + it)>(2 + it) as 

Z(t) - exp(iO(t) W + it 

where 

0(t) = Im logr ( + 2lt)- 2t l?g 7' 

and let T = t/(27r), m = LT1/2 and z = 2(T1/2- m) - 1. Then the Riemann- 

Siegel formula for Z(t) with n + 1 terms in its asymptotic expansion is given 
by 

in 

Z(t) = 2 E k 1/2 cos(O(t) - t logk) 

(44) k=1 

+ ) 
n- IT- 1/4 E ( .Z)(- I)JT- 

/2 + Rn(T) , 

J=O 

when Rn(T) = 6+(T-(2n+3)/4) for n > 0 and T > 0. Here, the 1Dj(z) are certain 

entire functions which can be expressed in terms of the derivatives of 

_ cos(7 (4z2 + 3)/8) 
(DO(z -- ((z) = COS(7t Z) 
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(D1 and 02 are given by 

(D ( (3) Z 
((Z 1 27(2 

and 

)2(Z)= 
672+ 2887f4 

The coefficients of rapidly converging power series expansions of 4(J (z) are 
given in [9]. Gabcke [51 has obtained error bounds for R(Qr), for t > 200 
and 0 < n < 10. For n < 4 these bounds are optimal, and they are given by 

JRn(T)1 < Cnt (2)/ , where co = 0.127, cl = 0.053, c2 = 0.01 1, C3 = 0.031, 
C4= 0.017. 

5.2. Computation of I(T + h) from I (T) . In order to compute I(T + h) from 
I(T) for some step h, we use Simpson's rule with extrapolation as follows. Let 

rT+h 
(45) I(T, h) := I (t)dt 

where f(t) = I4(2 + it)2I. We first compute two approximations I, and I2 to 
I(T, h) based on applying Simpson's quadrature rule to the interval [T, T+h], 
and to the two intervals [T, T + h/2] and [T + h/2, T + hi, respectively: 

I1 
h 

If(T) +4f(T+h/2) + f(T+h)} 

and 

h2 = h{ f (T) + 4f (T + h/4) + 2f (T + h/2) + 4f (T + 3h/4) + f (T + h)}. 

Using the technique of extrapolation (cf., e.g., [23, ?3.3]), these two values can 
be combined to yield the better approximation (provided that h is sufficiently 
small): 

(46) Iextr = I2 + (,2-I, 15, 

where (12 - I,)/ l 5 is a good approximation of the error in 12 . This error is 
used in our computations as a (very pessimistic) estimate of the error in Iextr . 

A possible alternative to (46) might be a Gauss-Legendre quadrature rule. For 
example, some experiments revealed that a 3-point Gauss-Legendre rule would 
yield roughly the same accuracy as the above 5-point Simpson rule (which, 
effectively, is a 4-point rule since the end point value f(T + h) on [T, T + h] 
is used as starting point value on [T + h, T + 2h]). However, in order to get 
an estimate of the error in the 3-point Gauss-Legendre rule, we know of no 
better way (cf. [23, p. 127]) than to apply a 4-point Gauss-Legendre rule, and 
compare the results; this would require four extra function evaluations, since the 
f-values needed in the 3-point rule cannot be used in the 4-point rule. This is 
our motivation for choosing (46). Professor W. Gautschi has kindly pointed out 
the alternative of using the 7-point Gauss-Kronrod formula for estimating the 
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error in the 3-point Gauss-Legendre formula. This also requires four additional 
points, but is more accurate than the 4-point Gauss-Legendre formula, since 
it has maximum degree of exactness. See, e.g., W. Gautschi, Gauss-Kronrod 
quadrature-A survey, in "Numerical Methods and Approximation Theory III" 
(G. V. Milovanovic, ed.), Faculty of Electronic Engineering, Univ. of Nis, Nit, 
1988, pp. 39-66. 

5.3. The zero-searching algorithm. Our algorithm proceeds with a step h to 
find zeros of the function E,(t), i.e., after the search has been completed for 
t < T, the interval [T, T + h] is searched (in certain cases combined with a 
second search on [T - h, T]) . Now and then, small parts of the computations 
are repeated with a smaller, and also with a larger step. This is in order to check 
whether the step has to be decreased or may be increased, respectively, in view 
of the required accuracy. 

Let T := Jh, I := I(TJ) and EJ := E,(Tj), j = 0, 1, Suppose that 
the interval [0, T,] has already been treated. This implies that IX and EJ are 
known, for j = 0, 1,..., i. We now compute I(Ti+>) from I(Ti) (by means 
of (42) and Simpson's rule as described in ?5.2) and then El+, (with the help 
of (40)). 

If E1E1+, < 0, then by continuity there is at least one zero between T1 and 
T1+ , This zero is found by a rootfinder described at the end of this section. 

If EiE,+ > 0 and E,_E, < 0, then we are finished with the interval 

[T,,I T1+]. 
If ElEj+I > 0 and E, El > 0 , then E,-I, E, and Ej+I have the same sign. 

We check whether IE,I < Ej_I and IE,l < IEl+J . If so, this means we have a 
local extremum; if not, we are finished on [T1, T1+,]. 

In case of a local extremum, we check whether 

(47) JE,I < h (log 1+1 + 2y) 

If not, we know that there can be no zero on [1T, T, 1,+] because of 

(48) dtE(t) = (+ it) - log + 2y) (log +;1 + 2y) 
and the mean value theorem, and we are finished on [T,, T1I,]. 

If we do have a local extremum such that (47) holds, we fit a quadratic 
polynomial through the three points (T,_1, El,,), (T,, E), (T,+l' E,+,) and 

compute the point Te where this polynomial has its extremum. If h is small 
enough, there should be a zero, T = T,, of E'(t) very close to T = T,. This 
zero is found with the Newton process. Next, I(17) and Ee := E,T(T1) are 
computed, and if FeF, < 0, then there are zeros on [1T,, T1,] and [T,, T7,+], 
which are found by the rootfinder described below. This completes the descrip- 
tion of our algorithm, apart from the rootfinder. 

The rootfinder is designed to find a zero of E,(t) on the interval [a, b], 
where E,((a) and E,T(b) have different sign. First, the intersection point 
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(c, E,(c)) of the line through (a, E,T(a)) and (b, E,(b)) and the horizon- 
tal axis is found. Next, a quadratic polynomial is fitted through the three points 
(a, E7,(a)), (c, E7,(c)), (b, E,(b)), and its zero on [a, b] is taken as the start- 
ing point to find a zero of EL(t) on [a, b] with the Newton process. 

5.4. Error control. The numerical computations were carried out on the CDC 
Cyber 995 computer of SARA (the Academic Computer Centre Amsterdam), 
which has a floating-point mantissa of 48 bits, i.e., a machine accuracy of about 
14 decimal digits. 

Our aim was to compute as many zeros as possible of the function E,(t) 

on the interval [0, 5 x 105], each with an absolute error of about 10 . This 
means an accuracy of at least 5 decimal digits for the smallest zero, and 10 
decimal digits for the largest zero below 5 x I05. 

The error in the computation of IC(' + it)l was controlled as follows. 

For t c [0, 5 x I03] we applied the Euler-Maclaurin formula (43) in single 

precision. If we assume IUrn (2 + it), < 10- A, then it follows (cf. [20, pp. 
151-152]) that 

n (27r)-1 IA/(2m+2)(t + m + 1). 

This still leaves freedom to choose one of either n or m, given t and A. We 
took A = 15 and (for most t) m = 100, so that n 0.2244(t + 101). The 
actual error is dominated by the machine errors in the computation of the terms 
.-(1/2+it) in (43). A pessimistic upper bound for this error is 10- 4tn , and for 

the value of n given above, and for t < 5000, this is less than 5.8 x 108. 
For t c [5 x 103, 5 x 105] we applied the Riemann-Siegel formula (44) with 

n = 3, in double precision (i.e., with an accuracy of about 28 decimal digits), 
and the result was truncated to single precision. We denote this numerical 
approximation of Z(t) by Zd(t). An extensive error analysis for t c [3.5 x 

107, 3.72 x 10 8] is given in [15]. A similar analysis shows that for t c [5 x 
103, 5 x 105] the error is dominated by the inherent error in (44), i.e., 

IZd(t)-Z(t)I < 0.031t 2.25 < 1.5 x 10 for t c [5 x 10, 5 x 10 ]. 

In order to get an idea of the actual error, we computed IC(' + it)l by (43) and 
compared it with I Zd(t)I, for t = 4900(0.1) 5100. The maximum difference we 

found was 3.9 x 10- 10 at t = 5067.2. 
Since the function E,T(t) measures how well the integral I(t) is approximated 

by the function t(log t + 2y - 1) + ir, we can expect a loss of significant digits 
when we subtract the two terms for the computation of E,(t). Therefore, we 
computed the integral I(t, h) in (45) so that its contribution to the total error 
in I(t + h) (= I(t) + I(t, h)) was as small as the machine accuracy allows. 
Thus, the number h was chosen such that 

(49) (I2 -,1)/ 1 5 1_ 
10-i2I 
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(Recall that (12 - II)/ 15 is a very pessimistic estimate of the quadrature error 
in I(t, h).) Actually, we took h = 0.01 for 0 < t < 500, h = 0.02 for 

500 < t < 2000 and h = 0.05 for 2000 < t < 500000. Several spot checks 

were carried out locally for smaller values of h. To summarize, we estimate 
that the number of correct digits in our computation of E, (t) varies between at 

least 13 decimal digits near t = 0 and about 7 near t = 5 x 105 . The absolute 
error is about 10 12t(log I + 2y - 1) 1 5.7 x 10-6 for t = 5 x 105. 

In the rootfinder used in the zero-searching algorithm described in ?5.3, the 
Newton process was iterated to machine precision. Usually, no more than two 
Newton iterations were needed for this purpose. The influence of the error in 

E, (t) on its zeros may be quantified as follows. Suppose that in the neigh- 

borhood of a zero t = t0 of E, (t) we compute with E, (t) rather than with 

E,,(t), where E,T(t) = E,(t) + e, e being a fixed small number. Then the 
Newton process for the computation of t = to is given by 

ti+l-i _ E (t ) E= t_ n(tl)_ 
E' (tl ) EJ' (t') E, (tl) 

so there is a systematic error e/E, (ti) in the computation of the zero t = to . 
In particular, when E' (t) is small for t close to to, then the error in this zero 
may be large. We found 

t<500000,ER(t)=O -Et t 3.015, 

where the maximum is assumed for t = 137538.499969. For e = 10, this 
means a maximum absolute error in the zeros of E, (t) of about 3 x 10 5. 

6. RESULTS AND CONJECTURES 

In this section we present a selection of our computational results. We have 
found 42010 zeros of the function E, (t) on the interval [0, 500000]. The first 
100 of them are listed in Table 1. 

For selected values of n, Table 2 compares log tn with log n, and tn with 
n log n. The quotient log tn / log n is slowly changing, with a global tendency 
to decrease. We believe it converges to 1, although very large tn will certainly 
have to be computed in order to corroborate this. The quotient tn/n log n first 
decreases to 0.8904, and then increases slowly to 1.1 180; no possible conclu- 
sion about a limit is apparent from these data. Perhaps n log n is just a rough 
approximation to tn, much as n log n is a rough approximation to Pn , the nth 
prime. 

Data on gaps between consecutive zeros of E, (t) are shown in Tables 3, 4, 5 
and 6. It appears that the gaps dn := tn - tn-i1, n = 2, 3, ... behave in a very 

irregular way. Although we cannot exclude the possibility that K = K(7X) = 

this seems unlikely to us. In fact, we believe K = to hold. Maxima and 

minima of the quotient dn/t1/41 are presented in Tables 4 and 5, respectively. 
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TABLE 1 
The first 1 00 zeros of E, (jt) 

n n n tn n tn n tn 
1 1.199593 26 99.048912 51 190.809257 76 318.788055 
2 4.757482 27 99.900646 52 192.450016 77 319.913514 
3 9.117570 28 101.331134 53 199.646158 78 321.209365 
4 13.545429 29 109.007151 54 211.864426 79 326.203904 
5 17.685444 30 116.158343 55 217.647450 80 330.978187 
6 22.098708 31 117.477368 56 224.290283 81 335.589281 
7 27.706900 32 119.182848 57 226.323460 82 339.871410 
8 31.884578 33 119.584571 58 229.548079 83 343.370082 
9 35.337567 34 121.514013 59 235.172515 84 349.890794 

10 40.500321 35 126.086783 60 239.635323 85 354.639224 
11 45.610584 36 130.461139 61 245.494672 86 358.371624 
12 50.514621 37 136.453527 62 256.571746 87 371.554495 
13 51.658642 38 141.371299 63 262.343301 88 384.873869 
14 52.295421 39 144.418515 64 267.822499 89 390.001409 
15 54.750880 40 149.688528 65 280.805140 90 396.118200 
16 56.819660 41 154.448617 66 289.701637 91 399.102390 
17 63.010778 42 159.295786 67 290.222188 92 402.212210 
18 69.178386 43 160.333263 68 294.912620 93 406.737516 
19 73.799939 44 160.636660 69 297.288651 94 408.735190 
20 76.909522 45 171.712482 70 297.883251 95 417.047725 
21 81.138399 46 179.509721 71 298.880777 96 430.962383 
22 85.065503 47 181.205224 72 299.919407 97 434.927645 
23 90.665198 48 182.410680 73 308.652004 98 439.425963 
24 95.958639 49 182.899197 74 314.683833 99 445.648250 
25 97.460878 50 185.733682 75 316.505614 100 448.037348 

TABLE 2 

Some data concerning the order of tn 

n tn 1O0 tn/ 1Og n tn/n 1og n 
2 4.757482 2.2502 3.4318 
5 17.685444 1.7849 2.1977 

10 40.500321 1.6075 1.7589 
20 76.909522 1.4496 1.2837 
50 185.733682 1.3355 0.9496 

100 448.037348 1.3257 0.9729 
200 978.559572 1.2997 0.9235 
500 2766.863752 1.2753 0.8904 

1000 6174.307534 1.2635 0.8938 
2000 13807.257919 1.2542 0.9083 
5000 39310.200279 1.2421 0.9231 

10000 89563.343441 1.2380 0.9724 
20000 204737.805598 1.2349 1.0337 
42010 499993.656034 1.2326 1.1180 

For 4 < n < 42010 we observed that d < t1/41 log tn_l, which in general is 
close to best possible, in view of (2), (3), and (30). Combined with the data in 

Table 5, this supports the conjecture that K(Zr) = - (where K is defined in (6)). 
The data on gn and gn/ log tn in Table 3 support (36) for a = 2 . Table 6 gives a 
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TABLE 3 
Various data related to the gaps between consecutive zeros 

n dn := tn -tn-l dn/tn7 l d /4nl lgnlgn od/on 9 tn5/4 E^2 d2 9f1g t 
ii ci,,:=t,, t,,1 d,/tdQ2 4//! t log d,, /log t,, logd,,/logn g,, -tn~d ,/1log t. 
2 3.557889 3.2484 3.3996 0.8137 1.8310 1.8016 1.1551 
5 4.140015 1.1249 2.1580 0.4945 0.8827 1.8864 0.6566 

10 5.162754 0.8685 2.1175 0.4435 0.7129 1.7165 0.4638 
20 3.109583 0.3620 1.0609 0.2612 0.3787 1.5146 0.3488 
50 2.834485 0.2096 0.7708 0.1994 0.2663 1.3773 0.2636 

100 2.389098 0.1132 0.5200 0.1427 0.1891 1.4164 0.2320 
200 0.075980 0.0024 0.0136 -0.3743 -0.4864 1.3835 0.2009 
500 3.624824 0.0690 0.5000 0.1625 0.2072 1.2801 0.1615 

1000 0.753268 0.0096 0.0850 -0.0325 -0.0410 1.2895 0.1477 
2000 0.596044 0.0051 0.0550 -0.0543 -0.0681 1.3067 0.1371 
5000 7.983033 0.0403 0.5670 0.1964 0.2439 1.3173 0.1245 

10000 22.172542 0.0741 1.2818 0.2718 0.3365 1.3931 0.1222 
20000 1.240345 0.0027 0.0583 0.0176 0.0217 1.4619 0.1195 
42010 1.636594 0.0023 0.0615 0.0375 0.0463 1.5505 0.1182 

TABLE 4 
Maxima of dI/t 1/4 

n ~ ~ ~ ~ ~~~~ tdn - I t/ 

2 4.757482 3.557889 3.3996 
370 1992.136994 24.861362 3.7330 
510 2850.462567 31.291596 4.2943 

1176 7420.277407 42.085752 4.5410 
1321 8475.806973 43.841653 4.5751 
1322 8520.092619 44.285645 4.6155 
1472 9708.104280 54.053035 5.4531 
2074 14365.716667 61.751030 5.6465 
4224 32120.209803 76.460074 5.7148 
4692 36685.948268 82.898386 5.9933 
4848 38070.374558 88.990702 6.3746 
5006 39518.339822 96.093410 6.8196 
6058 49552.122137 104.276659 6.9928 
8230 71699.441192 123.858798 7.5724 

17138 170654.832030 165.382076 8.1389 
18198 183304.147130 169.425143 8.1900 
21804 227502.378144 186.717169 8.5512 
23764 252647.958173 213.951458 9.5451 
39084 457431.381229 261.454651 10.0549 

frequency distribution of the computed values of d /tn"41 , in classes of length 
0.1 . For example, we found 10641 values in the interval [0, 0.1), 818 in the 
interval [0.9, 1.0) and 1 value (the largest) in the interval [10.0, 10.1) (cf. the 
last entry in Table 4). To summarize: 82% of all values are in [0.0, 1.0), 11% 
in [1.0, 2.0), 4% in [2.0, 3.0), 2% in [3.0, 4.0) and 1% in [4.0, 10.1). 

Table 7 presents maximal values of E,(t)l in intervals of length 25000, and 
the location of the adjacent zeros. The computed values of E,T(t)/tl /4 confirm 
the order results of E(t) as discussed at the beginning of ? 1. 
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TABLE 5 
Minima of dn /t4/41 

n t,, dn, d~ /tt 
2 4.757482 3.557889 3.3996 
3 9.117570 4.360087 2.9522 
4 13.545429 4.427859 2.5481 
5 17.685444 4.140015 2.1580 
6 22.098708 4.413263 2.1521 
8 31.884578 4.177677 1.8209 
9 35.337567 3.452989 1.4531 

13 51.658642 1.144021 0.4291 
14 52.295421 0.636779 0.2375 
33 119.584571 0.401722 0.1216 
44 160.636660 0.303397 0.0853 

159 753.427349 0.280739 0.0536 
200 978.559572 0.075980 0.0136 
301 1604.012827 0.063653 0.0101 
628 3569.014754 0.062385 0.0081 

1030 6389.011638 0.038008 0.0043 
2674 18818.622459 0.037263 0.0032 
3616 27076.314671 0.031137 0.0024 
6841 57197.581870 0.022931 0.0015 
8088 70009.242085 0.021013 0.0013 

11857 110163.040870 0.006778 0.0004 
11987 111649.073447 0.004789 0.0003 
27021 294421.287720 0.005105 0.0002 

TABLE 6 
Frequency distribution of the d 1t,/4 -values, in classes of length 0.1 

10641 7208 5243 3192 1829 1812 1760 1082 912 818 
752 591 561 503 415 389 390 373 320 242 
210 201 196 190 195 170 143 143 130 121 
114 99 83 81 73 75 57 45 39 54 
68 46 30 40 23 30 35 36 19 21 
20 15 13 19 13 10 12 13 9 6 

2 2 7 4 8 6 5 4 7 5 
2 3 2 1 3 5 2 3 1 0 
0 2 1 1 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
1 

Graphs of EZ,(t) and its derivatives are presented in Figures 1-5, which cover 
the intervals [0, 50], [123400, 123600], [456999.4, 457431.4], [277514.8, 
277661.5], and [495151.35, 495321.95], respectively. Figure 2 shows how 
ET,(t) behaves on an arbitrarily chosen interval. Figure 3 shows this function 
near the largest observed dn-value (cf. the last entry in Table 4). Figures 4 
and 5 show the behavior of ET,(t) near its smallest and largest observed values, 
respectively (cf. Table 7). The function E,T(t) may increase sharply, but in view 
of (8) and (31) we see that it decreases relatively slowly, which is also reflected 
in the graphs. The function E'(t) has sharp peaks which roughly correspond 
to large values of 1( + it). Note that Figure 5 displays many local extrema 
of EZ,(t) in the large intervals between its consecutive zeros. 
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TABLE 7 
Maxima of IE,,(t)l in intervals [i x 25000, (i + 1) x 25000], 
and adjacent zeros tn I tn 

i t Et (t) E,(t)t/ n t^ldt, 
4 105730.30 -294.972917 -16.36 11511 105652.215612 78.840885 
5 130061.30 342.688448 18.05 13728 130060.547162 130.903167 
6 152359.00 -364.453147 -18.45 15615 152263.935681 95.831001 
7 183134.00 -355.682389 -17.19 18197 182999.306300 135.415687 
8 221488.30 367.810105 16.95 21310 221487.533725 104.953578 
9 225005.15 367.801167 16.89 21628 225004.360683 104.423051 

10 263358.05 404.632562 17.86 24614 263357.300497 135.522875 
11 277660.65 -436.894699 -19.03 25701 277514.752120 146.699293 
12 304718.75 -379.461854 -16.15 27807 304616.030686 103.513435 
13 328768.95 489.881453 20.46 29574 328768.180260 134.489310 
14 367120.55 -387.994451 -15.76 32491 366950.894252 170.362297 
15 379395.50 394.115535 15.88 33424 379394.773446 134.268815 
16 415716.60 -381.854476 -15.04 36021 415610.911107 106.341938 
17 428843.30 474.148290 18.53 36986 428842.537715 195.257502 
18 457170.60 430.409601 16.55 39084 457169.926578 261.454651 
19 495152.05 506.242025 19.08 41688 495151.305121 170.597059 

E (T) 

FIGURE 1 

E,,(t) and Ej(t) on the interval [0, 501 

o~~~~~~~~~~~~~~~~~~~~7 
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FIGURE 2 

E,(t) and El (t) on the interval [123400, 123600] 
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E,,(t) and E?4(t) on the interval [277514.8, 277661.5] 
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